Method

> We want to solve the following bi-level optimization problem. Loss of main task model

Learning To Simulate
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d Simulating data can be beneficial when
data is scarce or annotation is costly [1,2].

Previous work simulates large quantities
of random scenes, €e.qg., [3,4].

Can we automatically learn to simulate
better data for a particular task?

Can we find a better trade-off between
diversity and volume of the data?

Are the true data generating parameters
the best for training prediction models?

We explore these questions with a
reinforcement-learning based
approach to automatically adjust
simulation parameters

Simulation parameters
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Synthetic images
generated by our
parameterized traffic
scene simulator.
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Heavily modified
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: : for iteration=1,2,... do
SImU|E.1tOI’ an(.j sampllng are Use policy 7, to generate K model parameters 1,
non-differentiable Generate K datasets D« y|,) Of size M each
Train or fine-tune /K main task models (MTM) for £ epochs on data provided by My
Resort to reinforcement learnin g Obtain rewards R(v), ), i.e., the accuracy of the trained MTMs on the validation set
Compute the advantage estimate Ay, = R(;) — b
Vanilla policy gradients for optimization endUpdate the policy parameters w ¢ w 1 3k V.o log(ma) i

Algorithm 1: Our approach for “learning to simulate” based on policy gradients.
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Figure 2: Top row: The decision boundaries (shaded areas) of a non-linear SVM trained on data boundaries
generated by q(x,y| 1,) for three different iterations ¢ of our policy 7. The data points overlaid are

the test set. Bottom row: Decision boundary when trained on data sampled from p(x, y| ¥, ) (left)

and on the converged parameters 1™ (middle); Data sampled from ¢(x, y| ™) (right).
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> Ground truth data-generating
parameters are given.
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> Model achieves lower error on the
unseen test set than the mean error
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Semantic segmentation on
real data:

> Experiments on KITTI

Training data random params random search LTS KITTI train set
Car IoU 0.480 0.407 0.579 0.778

Table 1: Segmentation Car IoU on the unseen KITTI test set for a ResNet-50 segmentation network
trained using synthetic data generated by random parameters or learned parameters using random > Model OUtperformS random
search or learning to simulate (LTS) for 600 epochs of each. We test the epoch with highest validation po|icy parameters and random
reward on the KITTI test set. We also report the maximum car IoU obtained by training on 982

search on real data

annotated real KITTI training images. _ _
> Model outperforms validation
set parameters on simulated
data
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